Practice Set A

Algebra and Arithmetic

Problems 3–8 require the Symbolic Math Toolbox. The others do not.

- 1. Compute:
 - $(a) \ 1111 345.$
 - (b) e^{14} and 382801π to 15 digits each. Which is bigger?
 - (c) the fractions 2709/1024, 10583/4000, and 2024/765. Which of these is the best approximation to $\sqrt{7}?$
- 2. Compute to 15 digits:
 - (a) $\cosh(0.1)$.
 - (b) ln(2). (*Hint*: The natural logarithm in MATLAB is called log, not ln.)
 - (c) arctan(1/2). (*Hint*: The inverse tangent function in MATLAB is called atan, not arctan.)
- 3. Solve (symbolically) the system of linear equations

$$\begin{cases} 3x + 4y + 5z = 2\\ 2x - 3y + 7z = -1\\ x - 6y + z = 3. \end{cases}$$

Check your answer using matrix multiplication.

4. Try to solve the system of linear equations

$$\begin{cases} 3x - 9y + 8z = 2\\ 2x - 3y + 7z = -1\\ x - 6y + z = 3. \end{cases}$$

What happens? Can you see why? Again check your answer using matrix multiplication. Is the answer "correct"?

5. Factor the polynomial $x^4 - y^4$.

- 6. Use **simplify** or **simple** to simplify the following expressions:
 - (a) $1/(1+1/(1+\frac{1}{x}))$
 - (b) $\cos^2 x \sin^2 x$
- 7. Compute 3³⁰¹, both as an approximate floating point number and as an exact integer (written in usual decimal notation).
- 8. Use either **solve** or **fzero**, as appropriate, to solve the following equations:
 - (a) 8x + 3 = 0 (exact solution)
 - (b) 8x + 3 = 0 (numerical solution to 15 places)
 - (c) $x^3 + px + q = 0$ (Solve for *x* in terms of *p* and *q*)
 - (d) $e^x = 8x 4$ (*all* real solutions). It helps to draw a picture first.
- 9. Use plot and/or ezplot, as appropriate, to graph the following functions:
 - (a) $y = x^3 x$ for $-4 \le x \le 4$.
 - (b) $y = \sin(1/x^2)$ for $-2 \le x \le 2$. Try this one with both plot and ezplot. Are both results "correct"? (If you use plot, be sure to plot enough points.)
 - (c) $y = \tan(x/2)$ for $-\pi \le x \le \pi, -10 \le y \le 10$ (*Hint*: First draw the plot; then use **axis**.)
 - (d) $y = e^{-x^2}$ and $y = x^4 x^2$ for $-2 \le x \le 2$ (on the same set of axes).
- 10. Plot the functions x^4 and 2^x on the same graph and determine how many times their graphs intersect. (*Hint*: You will probably have to make several plots, using intervals of various sizes, to find all the intersection points.) Now find the approximate values of the points of intersection using **fzero**.