
Incident-driven memory snapshot for full-virtualized OS using interruptive
debugging techniques

Ruo Ando, Youki Kadobayashi and Youichi Shinoda
National Institute of Information and Communication Technology,

4-2-1 Nukui-Kitamachi, Koganei,
Tokyo 184-8795 Japan

ruo@nict.go.jp

Abstract

Memory forensics is growing concern. For effective evi-
dence retrieval, it is important to take snapshot timely. With
proper modification of guest OS, VMM is powerful tool for
timely snapshot. In this paper, we propose an incident-
driven memory snapshot for full-virtualized OS using in-
terruptive debugging techniques. We modify debug register
handler to invoke snapshot facility of VMM. Software inter-
rupt or signal are 　 generated in register handler. Then,
we can take snapshot asynchronously when debug register
is changed. On guest OS, we apply three kinds of interrup-
tive debugging techniques: driver supplied callback func-
tion, DLL injection. IDT (interruption descriptor table) is
modified by driver supplied callback function, which makes
it possible to cope with vulnerability exploitation. DLL in-
jection is applied to insert security check function into a
resource access function. Proposed system is implemented
XEN virtual machine monitor and KVM (Kernel Virtual ma-
chine).

Keywords: Incident-driven snapshot, full virtualization, de-
bug register handling, IDT modification, DLL injection.

1 Introduction

1.1 Incident-driven memory snapshot

Memory forensics is growing concern. Insider attack and
information leak have become a serious problem. VMM
provides powerful facilities to access all states of guest VM:
CPU context, memory and other block devices. Timely
snapshot is important for evidence retrieval. If snapshot is
taken after incident has happened, usually much of evidence
has been lost. In this paper we propose an incident-driven
memory snapshot for full-virtualized OS using interruptive

debugging techniques. With proper modification of VMM,
we can obtain memory snapshot just in time when the inci-
dent happens. We modify debug register handler for this
purpose. When the incident has been occurred on guest
OS, it is notified by changing debug register. An interrup-
tion generator is inserted into register handler of hypervisor.
Then, host OS receives notification and takes snapshot. In
following section, we discuss asynchronous memory foren-
sics. In section 2, modification of VMM is presented. Im-
proving guest Windows(R) OS is discussed in section 3.

1.2 Towards an asynchronous memory
forensics

Figure 1 show the concept of our memory snapshot and
forensics on VMM. First, a incident is detected in guest
OS kernel. Second, the incident is notified to hypervi-
sor as change of debug register state. At this point, pro-
posed system takes snapshot using facilities of hypervisor.
Then, Host OS analyzes memory dump and takes some re-
action for the incident. With proper modification, VMM
can makes these lines (detect, dump, analysis and action)
multiplexed. Towards an asynchronous memory forensics,
snapshot need to be taken without suspension or need to be
taken in short time. In section 2, we present the modifica-
tion of VMM (hypervisor and host OS). In section 3, we
present how to improve guest OS for incident-driven snap-
shot.

2 Modification of VMM

In this section discuss show the modification of XEN[3]
and KVM[4]. Once the incident is detected on guest OS,
the value of special register (DR/MSR) is changed. The
context of virtualized CPU is stored in hypervisor stack.
VMM can detect the incident of guest OS when domain
context is switched because CPU context including the state



APPLICATION

KERNEL

APPLICATION

GUEST KERNEL

HYPERVISOR

DUMP ANALYSIS ACTION

DUMP

DETECT

DETECT

ANALYSIS

ACTION

SYNCHRONOUS

ASYNCHRONOUS

HOST KERNEL

Figure 1. Asynchronous memory snapshot and forensics. In VMM, snapshot modules is outside
the guest OS. With proper modification of VMM, memory snapshot and analysis is executed in VMM
(hypervisor and host OS). These lines can be multiplexed.

of DR/MSR register is changed. Then, proposed system
sends asynchronous notification to host OS.

Figure 2 shows an implementation of proposed system
in XEN. For asynchronous notification, software interrup-
tion is applied. Once the incident is detected in guest OS,
special registers (DR/MSR) is changed (vector [1]). Then,
the register handler caught this change (vector [2]) which is
transferred to the host OS by software interruption genera-
tor by global pirq (vector [3]). When the host OS caught the
pirq, memory snapshot is taken using facilities of QEMU
I/O.

Figure 3 shows an implementation of proposed system in
KVM (Kernel Virtual Machine). KVM makes Linux as hy-
pervisor. In implementation of KVM, a simple user defined
signal is applied for the asynchronous notification. When
the incident is detected by guest OS, the value of special
registers is changed (vector [1]). When the system control is
moved to VM root operation, the change is caught by regis-

ter handler. Then, user defined signal is sent to QEMU mod-
ules of KVM by control application or directly from kernel
(vector [3][4][5]). Finally, signal handler invokes memory
snapshot facilities using QEMU I/O module.

3 Modification of Windows guest OS

In this section we discuss the modification of host Win-
dows(R) OS for changing special registers (DR/MSR). We
apply IDT modification using process structure routine for
vulnerability exploitation. For malicious resource access,
we apply DLL injection.

3.1 Improving exception handler

Figure 4 is the brief illustration of improved exception
handler of proposed system. Improving exception handler
is divided into two steps: inserting software break point



RING3:

APLLICATION

RING2

RING1

RING0

OS

RING3:

APLLICATION

RING2

RING1:

OS

RING0:

HYPERVISOR

VM ROOT

OPERATION

APPICATION

 GUEST KERNEL

EXCEPTION
HARDWARE

INTERRUPTION

SOFTWARE

INTERRUPTION

GENERATOR

APPICATION

VM EXIT

VM ENTER

HYPERVISOR

GUEST OS HOST OS

CPU

DR/MSR

REGISTER

REGISTER

HANDLER

 QEMU I/O

 HOST KERNEL

 QEMU I/O

[1]

[2]

[3]

[4]

Figure 2. Proposed system implemented on XEN. Incident on guest OS is tracked as change of debug
register[1]. Register handler caught this change[2]. Then, software interruption as notification is
transferred to host OS[3].

and modification of IDT(R). At first, PsLoadImageNotiry-
Routine is applied to inspect whether target executable is
loaded. Then, software breakpoint is inserted below entry
point. Second, exception handler in IDT is modified. Modi-
fied routine traces EIP using MSR (model specification reg-
ister).

3.1.1 Driver-supplied callback function

To implement proposed system, we selected driver-based
callback function, which is invoked whenever an image is
loaded for execution. Driver-based callback function is used
for inspect whether target executable is loaded. Highest-
level system profiling drivers can call PsSetImageNotify-
Routine to set up their load-image notify routines. This
could be declared as follows.

void LoadImageNotifyRoutine (
PUNICODE STRING FullImageName,
HANDLE ProcessId,
PIMAGE INFO ImageInfo );

Once the driver’s callback has been registered, operat-
ing system calls the callback function whenever an exe-
cutable image is mapped into virtual memory. When Load-
ImageNotifyRoutine is called, the input FullImageName
points to a buffered Unicode identifying the executable im-
age file.

3.1.2 Debug register

IA-32 processors family provides MSR(model specific reg-
isters) for the purpose of recording taken brunches, in-
terrupts and exception. In this paper we focus on last



RING3:

APLLICATION

RING2

RING1

RING0

OS /

HYPERVISOR

GUEST MODE OS

ROOT OP

DR/MSR HANDLER

DR / MSR

REGISTER CPU (VT-i OR VT-d)

LINUX AS HYPERVISOR

KVM DRIVER

QEMU IO

SIGNAL HANDLER

SNAPSHOT

SIGNAL

CTL APP

VM EXIT

VM ENTER

[1] [2]

[3]

[4]

[5]

[6]

Figure 3. Proposed system implemented on KVM. When a incident is detected, guest OS changes
debug register. The change is caught in KVM module. Then, signal is generated and sent guest OS
to take snapshot.

branch interruptions/exceptions flag to save and search the
EIP(32 bit instructional pointer). EIP means return ad-
dress. The most recent taken branches, interrupts and ex-
ception are stored in the last branch record stack MSRs.
The branch records inform us of branch-FROM and branch-
TO instruction address. Concerning F6 family processor,
the five kinds of MSR, debugCtlMSR, LastBranchToIP,
LastBranchFromIP, LastExceptionToIP and LastExecution-
FromIP and available. It is possible to set break points on
branches, interrupts and exception and execute single step
debugging through these registers. These registers can be
used to collect last branch records, to set breakpoints on
branches, interrupts, exceptions and to single step from on
branch to the next.

3.2 DLL injection

We apply DLL injection for inspecting illegal resource
access of malicious process. DLL injection is debugging
technology to hook API call of target process. Windows
executable applies some functions from DLL such as ker-
nel32.dll. Executable has import table to use the linked
DLL. This table is called as import section. Among some

techniques of DLL injection, modifying import table is use-
ful because this technique is CPU-architecture independent.
Figure 5 show the modification of import table. Address
of function A on left side is changed to the address of in-
serted function on right side. In code table, some original
functions are appended to executable. Modified address is
pointed to code of inserted function. By doing this, when
the function A is invoked, the inserted function is executed.
In proposed system, the inserted function changes special
registers (DR/MSR) to notify the events to VMM and con-
trol domain.

3.2.1 Search and change IAT

After the module to be modified is determined, we need to
change the address in IAT (Import Address Table) to our
inserted DLL. ReplaceIATEntryInAllMods is available for
changing the address of module. In this ReplaceIATEntry-
Modues, ReplaceIATEntryInOneMod is invoked to get the
address modules in import section table. Once the address
of modules we try to insert our DLL, WriteProcessMemory
is availabe for change the IAT.



Figure 4. Improving exception handler. PsLoadImageNotifyRointe is applied to check if target exe-
cutable is loaded. Then, software break point is inserted. Also, IDT(R) is modified to trace EIP using
MSR.

3.2.2 Injecting DLL for all processes

To inject DLL for all running processes, SetWindow-
sHookEx is useful. For global hook, invoking SetWindow-
sHookEx maps DLL for all processes.

Inject.dll
call SetWindowsHookEx
Function to insert
ReplaceIATEntryInAllMods
ReplaceIATEntryINOneMod

To use this API, avoiding hook for Inject.dll itself is re-
quired. In the case that the address of function to insert need
to be hidden, LoadLibrary and GetProcAddress is hooked
because these APIs can search the address of inserted func-
tion.

4 Conclusions

Memory forensics is growing concern. For effective evi-
dence retrieval, it is important to take snapshot timely. With

proper modification of guest OS, VMM is powerful tool
for timely snapshot. In this paper, we propose an incident-
driven memory snapshot for full-virtualized OS using in-
terruptive debugging techniques. We modify debug register
handler to invoke snapshot facility of VMM. Software in-
terrupt or signal are generated in register handler. Then,
we can take snapshot asynchronously when debug regis-
ter is changed. On guest OS, we apply three kinds of in-
terruptive debugging techniques: driver supplied callback
function, DLL injection. IDT (interruption descriptor ta-
ble) is modified by driver supplied callback function, which
makes it possible to cope with vulnerability exploitation.
DLL injection is applied to insert security check function
into a resource access function. Proposed system is imple-
mented XEN virtual machine monitor and KVM (Kernel
Virtual machine).

References

[1] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin,
Andrew H. Mason, Clifford E. Kahn, ”A Retrospective
on the VAX VMM Security Kernel”, IEEE Trans. Soft-
ware Eng. 17(11): 1147-1165, 1991



DOS HEADER

SECTION TABLE

ADDRESS OF

FUNCION A

ADDRESS OF

FUNCION B

ADRESS OF

FUNCTION TO HOOK

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_

HEADER

IMAGE_DATA_

DIRECTORY

PE HEADER

FUNCION A

CODE TABLE

CODE OF

FUNCTION A

CODE OF

INSERTED FUNCTION

DOS HEADER

SECTION TABLE

ADDRESS OF

FUNCION B

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_

HEADER

IMAGE_DATA_

DIRECTORY

PE HEADER

FUNCION A

CODE TABLE

CODE OF

FUNCTION A

CODE OF

INSERTED FUNCTION

ADDRESS OF

INSERTED FUNCTION

Figure 5. Dll injection by the modification of import section table. Address of function to hook is
changed to address of inserted function.

[2] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin,
Andrew H. Mason, Clifford E. Kahn, ”A Retrospective
on the VAX VMM Security Kernel”, IEEE Trans. Soft-
ware Eng. 17(11): 1147-1165, 1991

[3] XEN virtual machine monitor,
http://www.cl.cam.ac.uk/Research/

[4] Kernal Virtual Machine available at:
http://sourceforge.net/projects/kvm

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
and Andrew Warfield. Xen and the art of virtualization.
In Proceedings of the 19th Symposium on Operating
System Principles(SOSP 2003), Bolton Landing, NY,
October 2003.

[6] A Virtual Machine Introspection Based Architecture for
Intrusion Detection Tal Garfinkel and Mendel Rosen-

blum In the Internet Society’s 2003 Symposium on Net-
work and Distributed System Security (NDSS), pages
191–206, February 2003.

[7] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza Basrai, and Peter M. Chen. ReVirt: Enabling intru-
sion analysis through virtual-machine logging and re-
play. In Proceedings of the 2002 Symposium on Operat-
ing Systems Design and Implementation (OSDI 2002),
Boston, MA, December 2002.

[8] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad
Verbowski, Helen J. Wang, Jacob R. Lorch, ”SubVirt:
Implementing malware with virtual machines”, in Proc.
IEEE Symp. on Security and Privacy (the Oakland Con-
ference), May 2006.

[9] Daniel Farmer,Wietse Venema, ”Forensic Discovery”,
ISBN-10:020163497X, Addison Wesley, Jan 2005.


